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ABSTRACT 

Elastic wave scattering off a layer containing a single set of vertical periodic fractures is 

examined using a numerical technique based on the work of Hennion et al. [J. Acoust. Soc. Am., 

87(5), 1861-1870 (1990)]  This technique combines the finite element method and plane wave 

method to simulate three-dimensional scattering off a two-dimensional fractured layer structure.  

Each fracture is modeled explicitly, so that the model can simulate both discrete arrivals of 

scattered waves from individual fractures and multiply scattered waves between the fractures.  

Using this technique, we examine changes in scattering characteristics of plane elastic waves as a 

function of wave frequency, angle of incidence, and fracture properties such as fracture stiffness, 

height, and regular and irregular spacing.  

 

PACS numbers: 43.20.Gp, 43.20.Px, 43.58.Ta 
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I. INTRODUCTION 

 Fractures in sedimentary rock can have a significant impact on the production of gas and 

liquids in the subsurface.  These fractures often are near regularly spaced and near vertical with a 

preferred orientation in the horizontal plane due to regional geological stresses (Figure 1).  The 

conventional approach for characterizing these fractures using seismic (elastic) waves treats a 

fractured rock as an equivalent, homogeneous transversely isotropic medium with the elastic 

symmetry axis aligned in the fracture-normal direction.  This methodology has been adopted by 

many researchers to examine the seismic properties of fractured rock in physical experiments, 1 

theoretical modeling, 2,3 numerical studies using the finite difference method 4 and interpretation 

of field data. 5 A particularly important result from such research is that a geological unit 

containing aligned fractures can exhibit azimuthal anisotropy (around a vertical axis) in the 

velocity and amplitude of scattered elastic waves, which can be used for fracture detection and 

characterization.  This effective medium approach, however, neglects frequency-dependent wave 

phenomena such as scattering off and wave channeling along discrete fractures, which become 

increasingly important to consider in high-resolution seismic surveys using higher-frequency 

waves with wavelengths comparable to the fracture spacing. 

 Understanding these frequency-dependent effects of fractures on seismic behavior is critical for 

designing field measurements and collecting data. For the surveys to cover fractures of many 

scales, a broad range of frequency needs to be employed. Conversely, if fractures of certain size 

range are to be detected and characterized, a proper frequency range that should be used in the 

survey needs to be known.  These measurements can be performed at many scales, ranging from 

the well-logging (kilohertz), single-well (hundreds of hertz to kilohertz), cross-well (hundreds of 
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hertz) to the VSP (vertical seismic profiling) and surface seismic (10 to 100 hertz) scales. The 

data should be collected using multi-component sensors to capture the effect of fracture 

anisotropy augmented by wave frequency and fracture scale. These data can help to map and 

characterize fractures at many scales if the frequency-dependent and anisotropic effect of fracture 

properties on seismic waves is understood. To this end, numerical studies have been performed 

to examine high-frequency, three-dimensional seismic (elastic) wave scattering by fractures with 

a range of geometric and material properties.  

 The scattering of elastic waves off individual fractures can be simulated explicitly using a 

variety of numerical techniques.  For high-frequency wave scattering problems, the boundary 

element method (BEM) has been used for its accuracy in modeling the stress singularity and 

wave diffractions generated at the ends of fractures. 6-8 Typically, the BEM computation is 

performed by modeling a fracture as internal boundaries, and a series of linear systems of 

equations is solved for unknown crack- (fracture-) opening displacements at each frequency 

(frequency-domain BEM) or time step (time-domain BEM). Alternatively, for large-scale 

problems with heterogeneous distribution of material properties in the background medium of 

fractures, explicit, time-domain finite difference methods (FDM) have been used.  This is 

achieved by modeling individual fractures as thin compliant, orthotropic zones with a thickness 

equal to a single finite difference cell. 9 Using this method, Schoenberg et al. 10 studied two-

dimensional elastic wave scattering off an elastic layer containing a large number of aligned 

vertical fractures.  These simulations showed that an incident compressional wave can generate 

significantly large scattered shear waves when the fracture spacing is on the order of the shear 

wave wavelength. 
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 However, the direct extension of the existing numerical methods such as the BEM and FDM 

to three-dimensional fractured systems, which is necessary for studying the azimuthal anisotropy 

of scattered waves, is still difficult and not commonly performed.  This is primarily because the 

BEM requires a large computing time to solve multiple, linear system of equations with a large, 

densely populated system matrix while the size of available computer memory limits the size of 

problems solvable using the FDM.   

 In this paper, we show that if the aligned fractures in a single horizontal layer are periodic and 

extend infinitely in one of the horizontal directions, the three-dimensional scattering of elastic 

waves off these fractures can be examined by using an efficient numerical technique that 

involves only a two-dimensional finite element mesh.  The method is based on the numerical 

technique developed by Hennion et al. 11 and Hlakdy-Hennion and Decarpigny 12 for acoustic 

(pressure) wave scattering by heterogeneous, periodic, and elastic structures.  By extending this 

technique to incident elastic waves, we compute frequency domain responses and subsequently 

time domain seismograms of plane elastic waves scattered from the periodic, two-dimensional 

fractured structure for arbitrary angles of incidence.   

II. THEORY 

A. 3D wave scattering by a 2D periodic structure 

 In this paper, we examine the scattering of incident plane waves by an array of vertical 

fractures that extends infinitely in a single horizontal direction within an elastic layer (Figure 2).  

The fractured layer is divided into an array of periodic cells in the x, z plane, with a thickness Lz 

and a width Lx.  The Cartesian coordinate system used throughout this paper is defined in the 

figure with the z direction pointing downward parallel to the fractures and the x direction parallel 
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to the fracture-normal direction.  The geometry of such a model is characterized by the 

continuous translational symmetry in the y direction, and the discrete translational symmetry with 

a period Lx in the x direction.  The homogeneous halfspaces above and below the fractured layer 

are denoted Ω- and Ω+, respectively.  A single unit cell within the fractured layer, which can be 

heterogeneous, is denoted Ω0, and the surrounding boundaries are defined as Γz+≡ Ω+∩ Ω0 and 

Γz-≡ Ω-∩ Ω0, and the periodic boundaries on the sides are Γx-≡ Ω0 (x=0) and Γx+≡ Ω0 (x=Lx).  The 

numerical technique shown in the following subsections models the homogeneous domains Ω- 

and Ω+ using plane wave theory, and the fractured domain Ω0 using the finite element method 

(FEM).   

B. Elastic plane wave propagation in a homogeneous domain 

 In an isotropic and homogeneous elastic medium with P (compressional) and S (shear) wave 

velocities CP and CS, respectively, and material density ρ, the particle displacement of 

monochromatic plane waves with a frequency ω propagating in the down-going (positive-z) 

direction is given by  
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where kz
P = kP

2 − k2  and kz
S = kS

2 − k2  are the vertical components of P- and S-wave 

wavenumber vectors with amplitudes kP and kS, respectively,  k is the horizontal wavenumber 
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given by 2 2
x yk k k= +  where kx and ky are the x- and y-direction wavenumbers each of which is 

preserved when the wave is scattered by a horizontal boundary.  “i” in the exponent is 1− .  R is 

the rotation matrix around the z axis, and the superscript T indicates the matrix transposition. R 

rotates the unit particle motion vectors ˆ Svv , ˆ Shv , and ˆ Pv  for the three independent wave modes 

to each column vector in the matrix U+.  Components Sva+ , Sha+ , and Pa+  of the column vector a+ 

corresponding to these vectors give the amplitude of individual wave modes, and each mode type 

is denoted in the subscript, i.e., P for the P wave, Sh for the horizontally polarized S wave, and 

Sv for the remaining component of the S wave.  Superscripts “+” indicate down-going waves.  

Three stress components on a horizontal plane are computed by 

 ( )( ) x y

xz
i k x k y tT

yz

zz

z e ω
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σ

+ −+ + + +
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where the matrix S+ is obtained by applying the elastic Hooke's law to Eq.(1), 
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S . (3) 

 For plane waves propagating in the up-going (negative z) direction, the displacement and 

stress are obtained by changing the signs of P
zk  and S

zk  in Eqs.(1) through (3).   

C. Finite element method for the fractured domain 

 For the domain containing fractures, the FEM is used to model the displacement and stress 

fields that can be highly complex due to the scattering of waves.  The variational equation of 
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three-dimensional, elastodynamic problems for monochromatic wave propagation can be written 

as 13 

 2
, , 0i j ijkl k l i ij j i i i i

V V V S

w C u dV w u dV w b dV w t dSω ρδ− − − =∫ ∫ ∫ ∫  (i ,j, k ,l =x, y, z),  (4) 

where uj and wi are the displacement and virtual displacement, bi and ti are the body force and 

surface traction, δij is the Kronecker delta and Cijkl is the fourth-rank tensor of elastic moduli.  

The summation rule applies to the repeated indices in the above equation and the rest of the 

equations in this subsection.  The domain of integration in space and the domain boundary are 

denoted V and S, respectively.  It is noted that the volumetric integrals in the first and the second 

terms represent the virtual strain energy and kinetic energy, respectively, and the third and fourth 

terms are the external virtual work done by the body force and the surface traction. 

 Because of the continuous translational geometric symmetry in the y direction and of the 

monochromatic plane incident waves, terms dependent on the parameters y and ω are both 

factored out of the displacement and force variables uj, wi, bi and ti.  For example, uj and wi can 

be expressed as  

 ( )( , , , ) ( , ) yi k y t
j ju x y z t u x z e ω−=  (5) 

 ( )( , , , ) ( , ) yi k y t
i iw x y z t w x z e ω−= . (6) 

“i”(= 1− ) in the exponent should not be confused with the indeces “i”(=x, y, z) in the subscript.  

We introduce the following variables for later use: 
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where iky= 1− ky.  When these expressions are introduced into Eq.(4), by denoting the two-

dimensional domain Ω and boundary Γ corresponding to the three-dimensional domain V and 

boundary S, 

 2 2
, , 0yik yi t

i j ijkl k l i ij j i i i ie e dy w C u d w u d w b d w t dω ω ρδ+−

Ω Ω Ω Γ

 
⋅ Ω − Ω − Ω − Γ = 
 

∫ ∫ ∫ ∫ ∫! ! . (9) 

Because of the periodicity, the integration in the y direction can be taken for a single period, i.e., 

[0, 2π/ky].  The time- and y-coordinate-dependent terms can be dropped off the equation, and the 

variational equation becomes  

 2
ij ijkl kl i ij j i i i iw C u d w u d w b d w t dω ρδ

Ω Ω Ω Γ

Ω − Ω = Ω + Γ∫ ∫ ∫ ∫ . (10) 

We model fractures explicitly as internal boundaries with surface traction.  The stress 

singularity arising at the ends of the fractures is treated by using the distorted mesh (quarter-node 

mesh) technique. 14,15  The work term for the boundaries (the second term on the right-hand side 

of the equation) can be divided into three parts, one for the external boundary Γext and the other 

two for the fracture surfaces Γf+ and Γf-.   

ext f f

i i i i i ij j i ij jw t d w t d w n d w n dσ σ
+ −

+ + + − − −

Γ Γ Γ Γ

Γ = Γ + Γ + Γ∫ ∫ ∫ ∫ . (11) 

The two opposing surfaces of the fracture are labeled with subscripts “+” and “-” and have unit 

normal vectors jn+  and jn− , respectively. Using these vectors, we wrote the tractions in terms of 

the stress components ijσ + and ijσ − .  The superscripts on the variables are to emphasize the surface 

of the fracture on which the variables are defined. Because we assume mathematical fractures 
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that have no thickness, the geometry of the two surfaces is identical, which results in 

f f f+ −Γ = Γ ≡ Γ  and jn− =- jn+ .  Therefore, 

 ( )
ext f f

i i i i i ij j i ij jw t d w t d w n d w n dσ σ+ + − − + −

Γ Γ Γ Γ

Γ = Γ + − Γ + Γ∫ ∫ ∫ ∫ . (12) 

 For small displacement and stress introduced by wave propagation, boundary conditions on 

the fracture (the linear slip or displacement-discontinuity boundary conditions) can be stated as  

 ij ij ijσ σ σ+ −= ≡ , (13) 

 ( )ij j i ij j jn t u uσ κ− − + −= = − , (14) 

where κij is the fracture stiffness tensor. 16,17 Using these relationships, the Eq.(12) becomes 

 ( ) ( )
ext f

i i i i i i ij i iw t d w t d w w u u dκ+ − + −

Γ Γ Γ

Γ = Γ − − − Γ∫ ∫ ∫ . (15) 

The second term on the right-hand side of the equation can now be seen as the internal virtual 

work (strain energy) stored in the fracture.  By introducing Eq.(15) into Eq.(10), the variational 

equation becomes 
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This equation is discretized using a nodal displacement vector U and a virtual nodal displacement 

vector W. 13 In vector notation, the discrete form of the equation is 

 2( ) 0T
b f ω+ − − =W K U K U MU F , (17) 
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where Kb, Kf, and M are the FEM bulk stiffness, fracture stiffness and mass matrices, 

respectively, and F is the FEM load vector, corresponding to each domain and boundary integral 

in the variational equation.  Because WT is for arbitrary virtual displacement, it can be dropped 

and 

 2( )b f ω≡ + − =KU K K M U F . (18) 

This is the finite element equation that is solved for unknown nodal displacement.  Because the 

system stiffness matrix K and the load vector F are computed from numerical integrations within 

and along the two-dimensional domain Ω, the FEM mesh required for this computation is two-

dimensional although each node has three degrees of freedom in displacement (e.g., Figure 3).   

D. Coupling between plane wave fields and FEM mesh 

 Hannion et al. 11 have given a detailed description of the method to couple plane acoustic 

wave fields and an FEM mesh.  Here, we present their method for the elastic case.  

 Because of the discrete translational symmetry (periodicity) in the x direction and the plane 

incident waves, the scattered wavefield within the halfspaces Ω- and Ω+ can be expressed by a 

superposition of an infinite series of plane waves with discrete x-direction wavenumbers.  In 

order to solve the problem numerically, this series is truncated at a finite number M.  Therefore 

the wavenumber for the nth mode is given by knx=k0x+2π(n/Lx) (n=-M, -M+1, …, 0, …, +M) 

where kx0 is the x-direction wavenumber for an incident plane wave, which we previously 

denoted kx.  In this study, the series truncation number M was determined so that the total number 

of the modes 2M+1 is equal to the number of FEM nodes along the boundaries Γz+ and Γz-. 
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 We first examine the plane wave field in the domain Ω+ along the boundary Γz+.  Since only 

down-going waves exist in this domain, the displacement and stress are 

 nx

M
ik xT

n n n
n M

e
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+ + +

=−
= ∑u R U a , (19) 

 nx
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n n n
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where T
nR , n

+U , n
+S , and n

+a  are obtained by substituting k, P
zk , and S

zk  in Eqs.(1) through (3) by 

wavenumbers nxk , P
nzk , and S

nzk  of corresponding modes.  The dependency on the term ( )yi k y te ω−  is 

understood and dropped from Eqs.(19), (20), and the following derivations.  Also, without losing 

generality, the origin of the z coordinate is defined on Γz+, which has eliminated E+(z=0)=E 

(identity matrix) from the equations.   

 Within the FEM domain Ω0 along Γz+, a similar decomposition of the displacement field can 

be obtained from a truncated Fourier series, 

 nx

M
ik x

n
n M

e
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+ +
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= ∑u c , (21) 

where the coefficient vectors n
+c  can be computed from the displacement along Γz+ by 

 
/ 2

/ 2

1 ( )x
nx

x

L ik x
n L

x

x e dx
L

+ −+ +

−
= ∫c u . (22) 

From term-by-term comparison between Eqs.(19) and (21), coefficient vectors n
+a  can be 

expressed via n
+c  as ( ) 1

n n n n

−+ + +=a U R c .  By introducing this relationship into Eq.(20), the stress 

(or traction) along the boundary can be computed by 

 ( ) 1
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M
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n n n n n
n M
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+ −+ + + +

=−
= ∑σ R S U R c . (23) 
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This relationship is important because it explicitly gives the traction along the boundary via 

displacement, hence eliminating the necessity for the unknown parameters of the plane wave 

field within Ω+.  

 We now write Eq. (23) via nodal displacement.  The boundary displacement and traction (or 

stress) can be expressed by their nodal values as 

 
1
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I
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where the summation is performed only for the boundary nodes along a single element e, and 

NeI(x) are the shape functions for nodes I (I=1, 2, …, Nnx).  u+eI and σ +eI are the nodal 

displacement and stress.  The displacement along the boundary is given by a union of the 

displacement for each element as 

 
1

( ) ( )
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where Nex is the number of elements along Γz+.  Therefore the coefficient vectors n
+c  in Eq. (23) 

are computed from Eqs. (22) and (26) as  
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c u
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, (27) 

where he is the width of each element e (e=1, 2, …, Nex), xe is the x coordinate of the element 

center, and U+ is a column vector containing the nodal displacement vectors along the boundary.  
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x′ indicates the local coordinate defined around xe (-he/2≤x′≤he/2).  For the special case when the 

width of the elements along the boundary is constant (≡h) and Nnx=3, the matrix n
+A  becomes 

 11 12 13 21 22 23 31 3( ) ( )
exn n n n n n n n nNθ θ θ θ θ θ θ θ+ + + + + + + + + = + + A E E E E E E# , (28) 

where E is the 3x3 identity matrix and  

 
/ 2

/ 2
( )

nx e
nx

ik x h ik x
neI Ih

x

h e N x e dx
L

θ
− + ′−+

−

⋅ ′ ′≡ ∫ . (29) 

 The nodal forces on an element e along the boundary Γz+ are computed by  

 
/ 2

/ 2

( ) ( )
e

e

h

eI eI e
h

N x x dx+ +

−

′ ′ ′= ∫f t , (30) 

where e
+t (=σ +) is the boundary traction computed using the plane wave solutions.  From 

Eqs.(23) and (27), these forces can be computed from the nodal displacements on the boundary 

as 

 ( )
/ 2

1

/ 2

( )
e

nx e nx

e

hM
ik x ik x T

eI eI n n n n n
n M h

e N x e dx
−′+ + + + +

=− −

′ ′= ⋅∑ ∫f R S U R A U . (31) 

Therefore, the load vector containing nodal force vectors along the boundary is given as a linear 

function of the nodal displacement.  Again, when he=h and Nnx=3, this is 

 
( )

11 12 13 21 22 23 31 3

1*
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TT T T T T T T T
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#
, (32) 

where the superscript “*” indicates transposition and complex-conjugation of the matrix. 
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 We now discuss the boundary Γz- for which the effect of the incident wave needs to be 

considered.  Equations corresponding to Eqs. (19) and (20) for the displacement and stress are 

 0
0 0

nx x

M
ik x ik xT T

n n n Inc
n M

e e
+

− − − +

=−
= +∑u R U a R U a , (33) 

 0
0 0

nx x

M
ik x ik xT T

n n n Inc
n M

e e
+

− − − +

=−
= +∑σ R S a R S a , (34) 

respectively, where aInc is a column vector containing the complex amplitude of an incident plane 

wave.  Again, E- was dropped from Eqs. (33) and (34) by defining the origin of the z axis on the 

boundary Γz-. From the Fourier expansion of the displacement as in Eq. (21), Eq. (33) yields the 

relationships 

 T
n n n n
− − −=c R U a , 0n ≠ , (35) 

 ( )0 0 0 0 0
T

Inc
− − − += +c R U a U a , (36) 

where n
−a  is the amplitude vector for the nth reflected wave. n

−U  and n
−S  are obtained by changing 

the signs of the z-direction wavenumbers, i.e., + P
nzk → P

nzk−  and + S
nzk → S

nzk− , in the definitions for 

n
+U  and n

+S .  By eliminating the unknown reflected plane wave amplitudes n
−a  using Eqs.(35) 

and (36), Eq.(34) becomes 

 ( ) ( ) 0
1 1

0 0 0 0 0
nx x

M
ik x ik xT T

n n n n n b Inc
n M

e e
+ − −− − − − − + − − +

=−

 = + −  ∑ R S U R A U R S S U U aσσσσ , (37) 

where n
−A  is also defined by changing the signs of wavenumbers in n

+A .  Finally, the load vector 

can be obtained through the same procedure as for +F  but with e
−t =-σσσσ-, yielding 

 − − −= ∆ +F U F , (38) 
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where F  is the known term (incident wave term) arising from the second term in the right-hand 

side of Eq.(37).  Terms containing unknown nodal displacement vectors U+ and U- in Eqs.(32) 

and (38) are absorbed into the stiffness matrix of the FEM equation (18) during the assembly of 

the matrix. 

E. Periodic boundary and matrix condensation 

 Along the boundaries Γx- and Γx+, dynamic periodic boundary conditions are applied by using 

the Floquet-Bloch theory.  If the finite element matrix equation (18) is rearranged as 

 
11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

    
     =     
         

K K K U F
K K K U F
K K K U F

 (39) 

where subscript “1” denotes non-periodic displacement and force vectors, and “2” and “3” 

indicate periodic displacement and load vectors on boundaries Γx- and Γx+, respectively.  

Submatrices relating these vectors are given by Kij (i, j=1, 2, 3).  The “bar” on the load vector F1 

indicates that this is a known term.  It is noted that this equation is underdetermined, and 

additional constraints (boundary conditions) need to be applied.  The dynamic periodic boundary 

condition leads to the following relationships between nodal displacement and traction on the 

boundaries Γx- and Γx+ as 

 0
3 2

x xik Le+=U U , (40) 

 0
2 3

x xik Le−= −F F . (41) 

Using these relationships, the matrix equation (39) can be condensed as 

 
0

0 0 0

1 111 12 13

221 31 22 23 32 33

x x

x x x x x x

ik L

ik L ik L ik L

e
e e e

+

− + −

   +  
=    + + + +     

U FK K K
U 0K K K K K K

. (42) 
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This is the FEM equation that is solved to obtain complex displacements on the FE mesh for a 

given combination of an incident wave frequency ω and horizontal wavenumbers kx and ky.  

From the displacement along the boundaries Γx- and Γx+, n
−c  and n

+c  can be computed using 

relationships such as in Eq. (27), and subsequently, the plane wave amplitude coefficients n
−a  and 

n
+a  are obtained (e.g., from Eqs. (35) and (36)).  Finally, the displacement and stress fields for 

domains Ω- and Ω+ are computed by superposition of plane waves with a range of discrete 

horizontal wave numbers (Eqs.(19), (20), (33), and (34)). 

 Using this hybrid technique, the elastic wavefield within and outside the layer containing 

periodically spaced fractures can be computed for an incident plane wave.  Figure 4 shows 

snapshots of a compressional wave propagating across a periodically fractured layer as cubes cut 

out of three-dimensional wavefields.  Only the vertical (z) component of displacement is shown.  

In this particular model, the fracture spacing h is 4 m, the height H is 8m, and the stiffness is 

zero, i.e., completely open fractures.  Except for the fractures, the entire field is isotropic and 

homogeneous with P- and S-wave velocities of 3000 m/sec and 1731 m/sec, respectively, and the 

material density of 2100 kg/m3.  The incident plane P wave has an azimuthal angle of 45° 

(measured from the x axis around the vertical z axis) and a dip angle of 60° (measured from the 

horizontal plane), and is a Ricker wavelet of unit amplitude, with the central frequency of 444 Hz 

(the wavelength to fracture spacing ratio λP/h=1.69).  The complex scattering behavior of the 

waves gives rise to the localized and trapped energy within the fractured layer as seen in Figure 

4.  The time-retarded radiation of this energy back to the upper halfspace manifests itself as the 

reverberation (coda) in measured reflection seismograms which we will discuss in detail in the 

following section.  
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III.  EXAMPLES 

A. Numerical model 

 For the remainder of this paper, we examine the scattering of an incident plane elastic wave by 

a single layer containing an array of plane-parallel, periodically spaced fractures using the hybrid 

numerical technique developed in the previous section.  The analysis focuses on the reflection of 

an incident P wave by a fractured layer.  Also, the background medium of the fractured layer is 

assumed to have the same properties as the surrounding homogeneous halfspaces (i.e., density 

2100 kg/m3 and P- and S-wave velocities 3000 m/sec and 1731 m/sec) 

 The hybrid plane wave-FEM method allows us to propagate a plane wave with arbitrary 

angles of incidence upon the fractured layer.  By numerically simulating the scattering of plane 

waves propagating at a range of incidence angles, we can examine approximately the changes in 

the characteristics of reflected waves radiated far from a point source.  In applications such as 

surface seismic surveys for oil and gas exploration, seismic sources and receivers are often 

located on a surface parallel or near-parallel to the fractured layer, and their relative distance and 

orientation are changed to probe fractures at different depths and orientations.  To simulate this, 

we place a source and receiver pair on a single plane 100 m above the top of the fractured layer 

and change their locations symmetrically around a vertical axis on the plane.  This results in 

changes in both azimuthal and dip angles (θ and φ) of incident waves (Figure 5).   

 To minimize numerical dispersion, the central frequency of Ricker wavelets used as incident 

pulses was chosen such that there were at least 10 nodes of FE mesh per S-wave wavelength.  

Although the FE meshes used for this study were rather coarse (for example, a mesh consisting 
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of 4x12 elements of 1 m x 1 m-size, 8-node quadrilateral serendipity elements with the mesh 

refinement near the fracture tips was used for equally spaced, 8 m-tall fractures as shown in 

Figure 3), the computed waveforms were in close agreement with the results obtained using finer 

meshes (e.g., 8x24-element model.  We also checked the accuracy of the hybrid method using an 

accurate, two-dimensional frequency domain elastodynamic boundary element (BE) method. 7 In 

this exercise, the two methods were compared for waves propagating along the x, z plane.  

Because only a finite number of fractures was used in the BE model due to computational 

limitations, the BE results showed less coda than the results of the hybrid method that assumes 

an infinite series of fractures.  However, early-time waveforms computed at locations near the 

fractures showed good agreement, indicating that the scattering of waves by individual fractures 

can be modeled accurately by the hybrid method.  

 The primary parameters used for the simulations are: 1) the central frequency of incident 

Ricker wavelet (“low” 111 Hz and “high” 332 Hz, corresponding to P-wave wavelengths of 27.1 

m and 9.03 m), 2) fracture stiffness (for both normal and shear stiffnesses, “soft” 7.87x109 Pa/m 

and “stiff” 15.7 X109 Pa/m, corresponding to normal incident P-wave transmission coefficients 

of 0.96 and 0.99 at 111 Hz, and 0.77 and 0.92 at 332 Hz), 3) fracture height (“short” 8 m and 

“tall” 16 m) and 4) irregularity of the fracture spacing (either regular 4 m intervals or irregular, 

alternating 3 m and 5 m intervals).  Because there are still a large number of possible 

combinations among these parameters, only several illustrative examples of the results are 

presented in the following sections.  
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B. Waveforms as a function of incidence angles 

 For regularly spaced, “soft” 8 m-tall fractures, the waveforms of reflected waves for a unit-

amplitude incident P wave were computed for a range of dip and azimuthal angles.  The z, t 

(source-receiver azimuth direction) and r (source-receiver offset direction) components of the 

particle displacement, as defined in Figure 5, are shown in Figure 6a and 6b for both “low” and 

“high” frequency incident waves. The waveforms were computed at every 15° of increment in 

both dip and azimuthal angles. However, because the FEM system stiffness matrix becomes 

singular and the numerical code becomes unstable for the azimuthal angle of 90°, waveforms for 

89.5° are shown instead.  The direct waves were “muted” from the computed seismograms.  

 For the low-frequency case, the clear first arrivals in the z- and r-component seismograms are 

the reflected P waves that are followed by converted S waves. Using the notations in the theory, 

these S waves in the z and r components are the Sv waves, and S waves in the t component are 

the Sh waves. Reflections from the top and the bottom of the fractured layer are overlapping and 

difficult to distinguish from each other. With decreasing dip angle (measured from the horizontal 

plane) and increasing the source-receiver distance, amplitudes of the reflected waves increase 

significantly, making the detection of the fractured layer easier.  An increase in the azimuthal 

angle (measured from the x axis) results in decreases in both P- and S-wave amplitudes. In 

particular, the amplitude of reflected Sv wave vanishes when the incident direction is parallel to 

the fractures.  This can be explained by the source-receiver reciprocity: because no reflection of P 

waves (or S waves) occurs for an incident S wave with particle motion parallel to the fractures, 

when the source and the receiver are swapped, no reflection of S waves occur for an incident P 
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wave.  The Sh component exhibits finite amplitudes at intermediate azimuthal angles because of 

the azimuthal anisotropy of the fractured layer, as shown by Schoenberg et al. 2 

 For the high-frequency case, reflected waves show the same behavior as the low-frequency 

case.  However, each arrival of the primary reflections is followed by coda that last for an 

extended period of time.  Amplitudes of these coda compared to the leading, primary pulses are 

typically larger for smaller dip angles (i.e., larger incidence angles).  We examine the behavior of 

coda more in detail in the following subsection. 

C. Azimuthal variations of waveforms 

 From Figure 7a to 7e, azimuthal gathers of the z-component waveforms at a dip angle of 45° 

are shown for fractures with a range of properties.  Within each plot, solid lines are computed 

using the hybrid technique, and the dotted lines are obtained by applying the static effective 

medium approximation to the fractured layer. In this approximation, the transversely isotropic 

elastic moduli of the layer containing fractures are computed by adding the compliance of the 

fractures to the matrix compliance. 18 

 For the low-frequency case shown in Figure 7a, results of the hybrid method and the effective 

medium approximation are in excellent agreement.  However, the development of coda results in 

significant differences in the waveforms for the high-frequency cases (Figure 7b).  It is noted that 

the first-arriving part of the reflected P waves shows rather good agreement between the two 

methods.  However, for small azimuthal angles, the distortion of the latter part of the first-

arriving wavelet corresponding to the layer-bottom reflection results in an increase in mismatch 
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between the waveforms.  The S-wave parts in the seismograms are difficult to identify because 

the amplitude of coda caused by the incident P wave is overwhelmingly large.  

 An increase in the fracture stiffness results in decreases in the amplitudes of reflected waves 

(Figure 7b and 7c).  The relative effect is larger for the coda part of the wave, resulting in the 

first-arriving part of the P waves becoming easier to identify from the rest of the waveforms.  

 The simulations show that the relative amplitude of coda be reduced for the “taller” fractures 

as shown in Figure 7d (compare with Figure 7b).  For this case, the P-wave reflection from the 

bottom of the layer is now clearly separated from the reflection from the top.  Although the first-

arriving parts of the individual reflections show good agreement with the static theory, the later-

arriving parts of the wavelets shows significant discrepancies.  The decrease in coda amplitude 

may result because longer fractures increase the forward scattering of an incident wave, 19  which 

reduces the contributions to the coda by waves scattered by distant fractures. 

 The periodic geometry and material properties of the fractures can be “perturbed” by modeling 

multiple fractures with a range of properties within a single periodic cell. Here we examine only 

the case for perturbed fracture spacing.  In Figure 7e, waveforms are computed for periodic but 

irregular fracture intervals alternating between 3 m and 5 m in contrast to the regular 4 m 

intervals in Figure 7b.  All other parameters are identical.  Although the effect is not as strong as 

the “stiff” and “tall” fractures, the relative amplitude of the coda was, again, reduced compared to 

the reference case in Figure 7b.  This decrease is due to the destructive interference between 

scattered waves due to the less ordered geometry of the fractures.  It is interesting to note that the 

first-arriving part of the reflected P waves are well-approximated by the static effective medium 
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theory shown by the dotted lines even for small azimuthal angles. This was also observed for the 

“stiff” fracture case in Figure 7c.    

D. Azimuthal variations of spectra 

 For the waveforms shown in the previous section, it is difficult to identify the azimuthal 

anisotropy due to the fractures using the complicated, seemingly random waveforms of the 

scattered high-frequency waves.  To identify any consistent trends in the multiple scattering or 

resonance structures of the waveforms, we computed the amplitude spectra of the waveforms 

shown in Figure 7b to 7e excluding the direct waves.  Each spectrum (Figure 8a to 8d) was 

normalized by the spectra of the incident wave.  Spectra for waveforms computed using the static 

effective medium approximation are overlaid in dotted lines.   

A comparison between the spectra computed by the hybrid plane wave-FEM method and the 

effective medium theory show that the results start to deviate at frequencies near 200 Hz 

corresponding to the fracture interval to P-wave wavelength ratio of h/λP~1/4.  In contrast, the 

sharp peaks in the spectra that contribute to the coda in the waveforms appear at frequencies 

above 300 Hz (h/λP>0.4) for the regularly spaced fractures, and above 150 Hz (h/λP>0.2) for the 

irregularly spaced fractures, indicating a strong correlation between the periodicity of the fracture 

interval and the coda frequency. 

Also, for periodic fractures with regular spacings (Figure 8a, b, and c), the spectral profiles 

show a clear trend that shows upward shifts of the peaks (as indicated by solid triangles) with 

azimuthal angle.  This trend becomes less obvious for irregular intervals (Figure 8d), but still 

noticeable changes as a function of azimuthal angle are present.  The regularly spaced notches in 

the spectra are possibly caused by the tuning effect of the layer because they can be observed for 
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both hybrid and effective medium computations, and also, the intervals of notches are shorter 

(approximately half) for the “tall” fractures (Figure 8c).  These notches show the same shifting 

behavior as the spectral peaks although the changes in frequency are smaller.  These 

characteristics of the spectra of reflected waves can be used as a diagnostic tool for detecting and 

characterizing a layer of parallel vertical fractures in the subsurface. 

IV.  CONCLUSIONS 

 In this article, we presented an efficient numerical technique for examining the three-

dimensional scattering of plane elastic waves by periodic, two-dimensional structures containing 

fractures.  Using this method, we studied the changes in the characteristics of reflection 

seismograms as a function of incidence angle, wave frequency, and fracture parameters including 

fracture height, spacing, and stiffness.   

 For an incident low-frequency P wave, the results of the static effective medium 

approximation and the explicit simulations by our method were identical.  This was somewhat 

surprising for us because the fractures have a finite height that is relatively small compared to the 

wavelength, even though the effective medium approximation assumes fractures with an infinite 

height.  For an incident high-frequency wave, the results showed that the scattering from 

individual fractures and multiple reflections between fractures results in strong reverberations 

(coda) in seismograms for high-frequency waves.  These reverberations indicate the presence of 

the fractures with spacings similar to the wavelength of the probing waves, and the magnitude of 

the reverberation is sensitive to both geometry and the stiffness of the fractures.  To delineate the 

contribution of each effect quantitatively, however, further extensive parametric studies should 

be performed.   
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 Unlike the low-frequency case, the reverberations in the high-frequency seismograms can 

obscure the azimuthal anisotropy of seismic signatures such as amplitude anisotropy of the 

scattered Sh and Sv waves.  We demonstrated that for periodic, regular and near-regular fracture 

spacings, systematic changes can occur in the spectral profiles of high-frequency seismograms as 

a function of azimuthal angle, which can be an alternative diagnostic tool for identifying the 

fracture orientations.   

 Although only limited and simple cases were examined in this article, we emphasize that more 

realistic, complex geometry and material properties, such as heterogeneous layering, non-planar 

fractures, non-uniform fracture stiffness, can be modeled by modifying the FEM mesh for the 

unit cell. Thus, this technique provides computationally inexpensive solutions for studying the 

fundamental characteristics of elastic waves scattered by aligned fractures without resorting to 

extensive three-dimensional computations.   
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Figure 1  Near-parallel vertical fractures in sandstone. Chaco canyon, NM.  

 

Figure 2  A model fractured medium containing periodic fractures.  The heterogeneous layer 

containing fractures (domain Ω0) is modeled using FEM and the bounding homogeneous 

halfspaces (Ω+ and Ω-) are modeled by the plane wave method.   

 

Figure 3  Three-dimensional snapshots of plane waves propagating through a layer containing 

equally spaced parallel open fractures. The incident wave is a P wave (Ricker wavelet) with a 

wavelength approximately 1.7 times the fracture spacing.  

 

Figure 4  Source-receiver configuration for the numerical simulations.  The locations of the 

source and the receiver are changed symmetrically around a single vertical axis going through a 

fracture.   For specifying the dip (θ) and azimuthal (φ) angles, the point of reflection on the 

fractured layer is assumed to be located slightly (2 m) above the top ends of the fractures that are 

100 m below the source-and-receiver level.   

 

Figure 5  An example of FE mesh used for computing the wave scattering by equally spaced (4-

m spacings), 8-m tall fractures.  Both mesh refinement and the distorted mesh (quarter-node) 

techninque were applied to the ends of the fracture.  

 

Figure 6  z-, r- and t-component seismograms computed for the “low-frequency” cases (Figure 

6a) and the “high-frequency” cases (Figure 6b).  Angles of incidence (θ: dip angle, φ: azimuthal 

angle) are indicated on the right edge of the plots.  For the “low-frequency” cases, arrivals of 
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three wave modes are clearly seen (indicated as P, Sv and Sh below the wavelets for the θ=30° 

cases). For the “high-frequency’ cases, mutiple scattering (coda) dominates the seismograms and 

P and Sv waves are difficult to distinguish.  

 

Figure 7a “Low-frequency” waveforms for “soft, short and regular” fractures. 

Figure 7b “High-frequency” waveforms for “soft, short and regular” fractures. 

Figure 7c “High-frequency” waveforms for “stiff, short and regular” fractures. 

Figure 7d “High-frequency” waveforms for “soft, long and regular” fractures. 

Figure 7e “High-frequency” waveforms for “soft, short and irregular” fractures. 

 

Figure 7  Azimuthal changes in the z-component waveforms of reflected waves for the incidence 

dip angle of θ=45°. Direct arrivals (Incident waves) are not shown.  For comparison, predictions 

by the static effective medium approximation are shown in dotted lines. 

 

Figure 8a Frequency response for “soft, short and regular” fractures. 

Figure 8b Frequency response for “soft, short and regular” fractures. 

Figure 8c Frequency response for “stiff, short and regular” fractures. 

Figure 8d Frequency response for “soft, long and regular” fractures. 

Figure 8e Frequency response for “soft, short and irregular” fractures. 

 

Figure 8  Spectra of waveforms shown in Figure 6b to 6  e normalized by the incident wave 

spectra.  All plots exhibit a trend that shows shifts of spectral peaks (as indicated by solid 

triangles) and valleys to higher frequencies with increasing azimuthal angle. 
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